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Abstract

We present a new algorithm for computing left Kan extensions based on the venerable “chase”
algorithm from relational database theory. We show how our algorithm performs a breadth-first
construction of an initial term model for a particular finite-limit theory associated with each left
Kan extension, and we provide experimental data demonstrating our algorithm’s performance.

1. Introduction

Let C and D be categories and F : C → D a functor. Given a functor J : D → Set, where
D → Set (also written SetD) is the category of functors from D to the category of sets, Set, we
define ∆F(J) : C → Set := J ◦ F, and think of ∆F as a functor from D→ Set to C → Set.

∆F has a left adjoint, which we write as ΣF , taking functors in C → Set to functors in
D → Set. Given a functor I : C → Set, the functor ΣF(I) : D → Set is called the left Kan
extension (Carmody et al., 1995) of I along F. Left Kan extensions of set-valued functors always
exist, up to unique isomorphism, but they need not be finite (i.e., ΣF(I)(c) may have infinite
cardinality for some object c ∈ C). In this paper we describe how to compute finite left Kan
extensions when C, D, and F are finitely presented and I is finite, a semi-computable problem
originally solved in Carmody et al. (1995) and significantly improved upon in Bush et al. (2003).

∆F also has a right adjoint, ΠF , known as a right Kan extension and related to database joins
along F (Schultz et al., 2017), making ΣF “the dual to join” in a precise sense. Among other
things, left Kan extensions are used to enumerate the elements of finitely-presented categories;
to construct semi-decision procedures for Thue systems; to compute the cosets of a group; and to
compute the orbits of a group action (Carmody et al., 1995). We now describe our two particular
motivating applications.

Our interest in left Kan extensions is motivated by their use in data migration (Schultz
et al., 2017; Spivak and Wisnesky, 2015; Schultz and Wisnesky, 2017), where C and D rep-
resent database schemas, F a “schema mapping” (Haas et al., 2005) defining a translation from
C to D, and I an input C-database (often called an instance) that we wish to migrate to D.
Our implementation of the fastest left Kan algorithm we knew of from existing literature (Bush
et al., 2003) was impractical for large input instances, yet it bore a striking operational resem-
blance to an algorithm from relational database theory known as the chase (Deutsch et al., 2008),
which is also used to solve data migration problems, and for which efficient implementations are
known (Benedikt et al., 2017).

In this paper, we formalize the above observation and show how to efficiently compute left
Kan extensions by using a chase algorithm and experimentally demonstrate its time and space
performance. Our algorithm and experiments are part of the open-source categorical query lan-
guage CQL, available at http://categorical.info.
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Figure 1: Left Kan Chase Throughput, Pushout of Sets

1.1. Performance in CQL

Scalability tests, for both time (rows/sec) and space (rows/mb of RAM) based on randomly
constructed instances of the running example taken on a 13” 2018 MacBook Air with a 1.6ghz
i5 CPU and 16gb RAM, on Oracle Java 11, are shown in Figure 1.1. Perhaps not as familiar as
time throughput, memory throughput, measured here in rows/mb, measures the memory used by
the algorithm during its execution as a function of input size; the periodic spikes in Figure 1.1
are likely do to the “double when size exceeded” behavior of the many hash-set and hash-map
data structures (Sedgewick and Wayne, 2011) in our Java implementation. Memory through-
put improves as the input gets larger, we believe, because the path-compressed union-find data
structure of item 3 above scales logarithmically in space. Time throughput (rows / sec) gets
worse as the input gets larger, we believe, because that same union-find structure scales linearly
times logarithmically in time. Although performance on random instances may or may not be
representative of performance in practice, our algorithm is fast enough to support multi-gigabyte
real-world use cases, such as Brown et al. (2019).

We expect chase engines designed by the database community to soon exceed the perfor-
mance of our algorithm, at least for the left Kan extensions we encounter in data migration. The
reason is that techniques based on indexing and statistical query optimization such as found in
many SQL engines work well for computing right Kan extensions, which correspond to joins
and selections and projections, and these same techniques tend to enable chase engine perfor-
mance (Benedikt et al., 2017). We hope that this paper encourages the development of chase en-
gines using the fully deterministic (up to isomorphism) parallel chase strategy described above,
and believe that the reduction of left Kan extensions to chases in general, rather than our new
chase algorithm above, will be the longer-lived contribution of this paper.
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2. Theory

In this section we describe the theory behind our chase-based left Kan algorithm.

2.1. Running Example
Our running example of a left Kan extension is a data integration problem that cannot be

solved (for all input instances) with a single relational algebra query of fixed size: quotienting
a set by an equivalence relation. In this example, the input data consists of amphibians, land
animals, and water animals, such that every amphibian is exactly one land animal and exactly one
water animal. We wish to compute all of the animals without double-counting the amphibians,
which we can do by taking the disjoint union of the land animals and the water animals and then
equating the two instances of each amphibian.

Our source schema C is the span Land’ ← Amphibian’ → Water’, our target schema D ex-
tends C into a commutative square with new sort / terminal object Animal and no ’ marks, and
the functor F is the inclusion:

Amphibian′
•

isAL′

zz
isAW′

%%
•

Land′
•

Water′

•
Animal′

F
↪−−−→

Amphibian
•

isAL

ww
isAW

''
•

Land

isLA ''

isAL.isLA=isAW.isWA •
Water

isWAww
•

Animal

Our input functor I : C → Set, displayed with one table per object, is:

Amphibian’ isAL’ isAW’
gecko lizard salamander
frog toad newt

Land’
lizard
toad
human
cow
horse

Water’
fish
salamander
newt
dolphin

Frogs are double counted as both toads and newts, and the left Kan extension equates them as
animals. Similarly, geckos are both lizards and salamanders. We thus expect 5 + 4 − 2 = 7
animals.

There are infinitely many left Kan extensions of I along F; each will be naturally isomorphic
to the one below in a unique way; in other words the following tables are unique up to choice of
names. The amphibians table of ΣF(I) is identical to that of I and is omitted:

Land isLA
lizard gecko
toad frog
human human
cow cow
horse horse

Water isWA
fish fish
salamander gecko
newt frog
dolphin dolphin

Animal
fish
frog
dolphin
human
cow
horse
gecko
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Because in this example F is fully faithful, the natural transformation ηI : I → ∆F(ΣF(I)), i.e. the
unit of ∆F a ΣF adjunction, is an identity of C-instances; it associates each source Land’ animal
to the same-named target Land animal, etc. Informally, we might say that this left Kan extension
only equates Animals, which are not part of schema C.

2.2. The Collage of a Functor

The collage (Garner and Shulman, 2016) of a functor F : C → D, written col(F), is a
canonical presentation of the category that “displays” F and which helps to axiomatize the natural
transformation ηI : I → ∆F(ΣF(I)) associated with the left Kan extension of any instance I along
F. To construct col(F) we first take the disjoint union of C and D. We then add a generating
morphism αc : c→ F(c) for each object c ∈ C, and finally we add an equation F( f )◦αc = αc′ ◦ f
for each generating morphism f : c→ c′ ∈ C.

Amphibian′
•

α //
isAL′

yy
isAW′

((

Amphibian
•

isAL

xx
isAW

''
•

Land′
α

55•
Water′

α

;;
•

Land

isLA &&

isAL.isLA=isAw.isWA •
Water

isWAxxisAL′.α=α.isAL isAW′.α=α.isAW •
Animal

The evident inclusion functors iC : C → col(F) and iD : D → col(F) of C and D into col(F)
will be used several times throughout the paper. We will also make use of the following easy
propositions:

Proposition 1. Let F : C → D be a functor. For objects c ∈ C and d ∈ D, there is a bijection
between hom-sets,

D(F(c), d) � col(F)(iC(c), iD(d)).

Proposition 2. Let F : C → D be a functor. The following are equivalent:

• the category of triples (I, J, f ), where I : C → Set, J : D→ Set, and f : ΣF(I)→ J,

• the category of triples (I, J, f ), where I : C → Set, J : D→ Set, and f : I → ∆F(J), and

• the category of functors col(F)→ Set.

2.3. Finite Limit Theories

A finite limit theory (Wells, 1994) consists of a finite set s1, . . . , s j of sorts and a set p1, . . . , pk

of sorted relation symbols—together these form a signature—as well as a set A of formulae,
which we call axioms, each having the following form:

∀(x0 : s0) · · · (xn : sn). φ(x0, · · · , xn)⇒ ∃!(xn+1 : sn+1) · · · (xm : sm). ψ(x0, . . . , xm)

where φ and ψ are (possibly empty) conjunctions of

• assertions x = x′, for some variables of the same sort

• assertions p(x, . . . , x′), for some variables of appropriate sort.
5



A pre-model I consists of a set I(s) for every sort s ∈ S , a subset I(p) ⊆ I(si1 ) × · · · × I(sik ) for
every relation symbol p of arity (si1 , . . . , sik ). A A-model is a pre-model that additionally satisfies
every axiom of A in the obvious way.

Finite limit theories can be described using partial functions instead of relations and exists-
unique quantifiers, in which case they are often called essentially algebraic theories (Wells,
1994), but we prefer the above definition because of its close connections to database theory.

2.4. The Finite Limit Theory of a Category

We now describe how to convert a category presentation—including that for the collage
col(F) of any functor F—into a finite limit theory. To do so, consider the objects of C as sorts
of the theory; convert each generating morphism of C to a binary relation symbol; and add com-
bined totality-functionality conditions for each generating morphism, for example:

∀(x : Amphibian). ∃!(y : Land). IsAL(x, y)

as well as the equations from C’s presentation.1 Here are the three equations from col(F), one
for the commutative square in D and two associated with F; see Section 2.2.

IsAL(x, y) ∧ IsLA(y, z) ∧ IsAW(x, y′) ∧ IsWA(y′, z′)⇒ z = z′

isAL′(x, y) ∧ αLand′ (y, z) ∧ αAmphibian′ (x, y′) ∧ IsAL(y′, z′)⇒ z = z′

isAW′(x, y) ∧ αWater′ (y, z) ∧ αAmphibian′ (x, y′) ∧ IsAW(y′, z′)⇒ z = z′

2.5. Chasing Embedded Dependencies

By weakening the above requirement that every existential quantifier be unique, we obtain
what category theorists call regular formulae (Wells, 1994) and database theorists call embedded
dependencies (EDs) (Deutsch et al., 2008), where assertions of equality are called equality gen-
erating (EGDs) and assertions of membership are called tuple generating (TGDs). Given a set of
EDs / regular theory A and a pre-model κ, to chase κ by A is to construct a pre-model chaseA(κ)
such that:

1. chaseA(κ) satisfies A (i.e., is an A-model).
2. there is a (possibly non-unique) morphism κ → chaseA(κ), and
3. for any model κ′ satisfying the above two criteria, there is a possibly non-unique morphism

chaseA(κ)→ κ′.

In the database theory literature, chaseA(κ) is called a “universal solution”(Deutsch et al., 2008).
Note that two such universal solutions to the same problem may have different cardinalities;
database theorists often identify instances κ and κ′ for which there exists morphisms κ → κ′

and κ′ → κ even if the morphisms do not compose to the identity, a notion called “homomor-
phic equivalence”. This deviation from traditional model-theoretic semantics is motivated by
a need to distinguish input data from “null” or “missing” data constructed during data migra-
tion/integration, and is discussed further in the conclusion of this paper.

1 From now on, we will omit universal quantifiers and sorts when they can be inferred from context, but we will
continue to make existential quantifiers explicit.
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2.6. Chasing Finite Limit Theories
Universal solutions in the sense of database theory are not a tight enough solution concept to

describe left Kan extensions. To obtain such a solution concept, we must appeal to the fact that
all the existential quantifiers in a finite-limit theory are modally unique.

Theorem 3. Given a finite signature (S , P) and finite set of axioms A, as in Section 2.3, for
any pre-model κ, there exists a pre-model chaseA(κ) and morphism h : κ → chaseA(κ) with the
following properties:

1. chaseA(κ) satisfies A (i.e., is an A-model),
2. for any model κ′ satisfying A and any morphism h′ : κ → κ′, there is a unique morphism

g : chaseA(κ)→ κ′ such that g ◦ h = h′.

Proof. The proof uses the theory of sketches; see Barr and Wells (2002) and Wells (1994). Note
that understanding the proof is not required to understand our chase algorithm. Given the theory
(S , P,A) there is a category S P and a set RP of limit cones such that the category of models for
the sketch (S P,RP) is equivalent to the category of A-models. Indeed, begin with the category
with objects S t P and a morphism φ → si for each φ ∈ P with arity (s1, . . . , sk) and 1 ≤ i ≤ k.
Now form the free finite limit sketch on this category and add to the sketch a cone for each φ that
enforces the unique map φ→ s1 × · · · × sk to be a monomorphism. Finally, for each axiom

∀(x0 : s0) · · · (xn : sn). φ(x0, · · · , xn) ⇒ ∃!(xn+1 : sn+1) · · · (xm : sm). ψ(x0, . . . , xm)

in A, the conjunctions φ and ψ are given by pullbacks, say p and q which already exist in S P,
and we finish by adding a morphism p → q. The resulting category sketch is (S P,RP), and it
is tedious but not hard to show that the category of models of this sketch is equivalent to that of
A-models.

The theorem then becomes just a restatement of the fact that the category of models of a limit
sketch (S ,R) is a reflective subcategory of the functor category SetS ; see (Barr and Wells, 2002,
Theorem 4.2.1). Here chaseA is the name of the reflection functor, and given κ ∈ SetS , the map
h is the unit of the reflection.

The properties above imply that the chase is a reflector, i.e. left adjoint to the inclusion of
the category of A-models into the category of pre-models. In other words, chaseA(κ) is an initial
object in the category of A-models equipped with a map from κ. We will next show that these
universal solutions can be used to compute left Kan extensions.

2.7. Left Kan Extensions Using the Chase
To compute a left Kan extension ΣF(I) using a chase algorithm (i.e. any algorithm that

produces universal solutions to embedded dependencies), we consider I as a pre-model I on the
theory associated to col(F), compute chasecol(F)(I), and then project the part we are interested
in. Our main theorem, up to abuse of notation, is:

Theorem 4. ∆iD (chasecol(F)(I)) � ΣF(I).

Proof. Let J B chasecol(F)(I); it is a C-instance. By definition, I = ∆iCI, so there is a map
I → ∆iC J and hence an induced map ΣiC I → J over I. Also ΣiC I contains I, and by universality
(Theorem 3 (2)), there is a unique morphism J → ΣiC I over I. By a standard argument, we have
an isomorphism J � ΣiC I.
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Now it suffices to show that ΣF(I) � ∆iD◦ΣiC (I). This can be seen at a high-level of abstraction
using profunctors, but at a hands-on level it follows from Proposition 1 which implies that colimit
formula for both sides are the same:

colim∑
c∈C D(F(c),d)

I(c) � colim∑
c∈C col(F)(iC (c),iD(d))

I(c).

3. Practice

Although performant chase implementations exist (Benedikt et al., 2017), at the time of writ-
ing none of them were appropriate for CQL’s left Kan implementation. First, not all of them
support all of finite limit logic (for example, systems based on TGDs would compute nine ani-
mals on our running example (Haas et al., 2005)). Second, many do not have any mechanism for
reporting the “lineage” or “provenance” necessary for us to easily construct a term model, rather
than a non-term model, as output. And finally, many are non-deterministic, attempting to trade
predictability for speed. For these reasons, we built a deterministic chase algorithm specialized
to left Kan extensions, resembling a parallel version of the algorithm in Bush et al. (2003).

3.1. Input Specification

The input to the categorical chase for a left Kan extension consists of:

• A finite set C, the elements of which we call source nodes

• For each c1, c2 ∈ C, a finite set C(c1, c2), the elements of which we call source edges from
c1 to c2. We may write f : c1 → c2 or c1 → f c2 to indicate f ∈ C(c1, c2).

• For each c1, c2 ∈ C, a finite set CE(c1, c2) of pairs of paths c1 → c2, which we call source
equations. By a path p : c1 → c2 we mean a (possibly 0-length) sequence of edges
c1 → . . .→ c2.

• A finite set D, the elements of which we call target nodes

• For each d1, d2 ∈ D, a finite set D(d1, d2), the elements of which we call target edges from
d1 to d2.

• For each d1, d2 ∈ D, a finite set DE(d1, d2) of pairs of paths d1 → d2, which we call target
equations.

• A function F : C → D.

• For each c1, c2 ∈ C, a function Fc1,c2 from edges in C(c1, c2) to paths F(c1)→ F(c2) in D.
We will usually drop the subscripts on F when they are clear from context.

• For each c ∈ C, a set I(c), the elements of which we call input rows.

• For each edge g : c1 → c2 ∈ C, a function I(c1)→ I(c2).
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The above data determines category C (resp. D), whose objects are nodes in C (resp. D),
and whose morphisms are equivalence classes of paths in C (resp. D), modulo the equivalence
relation induced by CE (resp. DE). Provided that for every two paths p1 and p2 : c1 → c2 that are
equivalent according to CE, the two paths F(p1) and F(p2) are equivalent according to DE, the
above data determines a functor F : C → D. This semi-decidable condition on F is checked by
the CQL automated theorem prover at compile time (Schultz et al., 2017) and does not concern
us here. Similarly, provided that I(p1) and I(p2) are equal as functions whenever paths p1 and
p2 are provably equal according to CE, the above data determines a functor I : C → Set. This
condition on I is decidable and checked by CQL at runtime. Apart from checking this condition
on I, the source equations CE are not actually used by any of the left Kan or chase algorithms
we are aware of, including ours.

3.2. The Chase Step

Like most chase engines, our categorical left Kan chase runs in rounds, possibly forever,
transforming a state until a fixed point is reached. Termination is undecidable, but conservative
criteria based on the acyclicity of the “firing pattern” of the existential quantifiers exist (Deutsch
et al., 2008). The state of a categorical chase for a left Kan extension consists of:

• For each d ∈ D, a set J(d), the elements of which we call output rows. J is initialized by
setting J(d) :=

⊔
{c∈C |F(c)=d} I(c).

• For each d ∈ D, an equivalence relation ∼d ⊆ J(d) × J(d), initialized to identity.

• For each edge f : d1 → d2 ∈ D, a relation J( f ) ⊆ J(d1) × J(d2), initialized to empty.

• For each c ∈ C, a function η(c) : I(c)→ J(F(c)). η is initialized to the co-product/disjoint-
union injections from the first item, i.e., η(c)(x) = (c, x).

Given a path p : d1 → d2 in D, we may evaluate p on any x ∈ J(d1), written p(x) resulting in a
(possibly empty) set of values from J(d2). Each round consists of the following actions, in the
following sequence. The step names were chosen to be similar to those in (Bush et al., 2003):

1. Action α: make all edges total. For every edge g : d1 → d2 in D and x ∈ J(d1) for which
there does not exist y ∈ J(d2) with (x, y) ∈ J(g), add a “fresh” symbol g(x) to J(d2) and
add (x, g(x)) to J(g).

2. Action βD: add all “coincidences” induced by D. The phrase “add coincidences” is used
by the authors of (Bush et al., 2003) where a database theorist would use the phrase “fire
equality-generating dependencies”. In this step, for each equation p = q in DE(d1, d2)
and x ∈ J(d1), we update ∼d2 to be the smallest equivalence relation also including
{(x′, x′′) | x′ ∈ p(x), x′′ ∈ q(x)}.

3. Action βF : add all coincidences induced by F. This step is similar to the step above, except
that the equation p = q comes from the collage of F and evaluation requires data from η
and I in addition to J.

4. Action δ: add all coincidences induced by functionality of edges. For every (x, y) and
(x, y′) in J( f ) for some f : d1 → d2 in D with y , y′, update ∼d2 to be the smallest
equivalence relation also including (y, y′).
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5. Action γ: merge coincidentally equal elements. In many chase algorithms, including (Bush
et al., 2003), elements are equated in place, necessitating complex reasoning and inducing
non-determinism. Our algorithm is deterministic: step 1 adds all possible new elements,
and the next steps add to ∼. In this last step, we replace every entry in J and η with its
equivalence class (or representative) from ∼, bypassing the need for complex reasoning
and allowing parallel replacement. It is also possible to maintain ∼ as a list of pairs, and
construct an equivalence relation all at once in this last step.

To see that this algorithm is equivalent to chasing with col(F), note that each TGD or EGD in
col(F) is fired by one of the above actions, and that none of the above actions are taken that do
not correspond to firing a TGD or EGD in col(F). Completeness (that our algorithm terminates
whenever a finite left Kan extension exists) is still an open question that we strongly suspect to be
true. The algorithm of Bush et al. (2003) is complete; however there are theories in regular logic
for which a parallel chase will diverge but a standard chase will converge (Deutsch et al., 2008),
so the answer is not immediately obvious. In practice, the possible divergence of a parallel chase
is tolerated because of the significant speed-ups possible compared to a sequential chase.

3.3. Example Chase Sequence
Recall that our source schema C is the span Land’ ← Amphibian’ → Water’, our target

schema D extends C into a commutative square with new sort / terminal object Animal and no ’
marks, and the functor F is the inclusion:

Amphibian′
•

isAL′

zz
isAW′

%%
•

Land′
•

Water′

•
Animal′

F
↪−−−→

Amphibian
•

isAL

ww
isAW

''
•

Land

isLA ''

isAL.isLA=isAW.isWA •
Water

isWAww
•

Animal

The collage of F is:

Amphibian′
•

α //
isAL′

yy
isAW′

((

Amphibian
•

isAL

xx
isAW

''
•

Land′
α

55•
Water′

α

;;
•

Land

isLA &&

isAL.isLA=isAw.isWA •
Water

isWAxxisAL′.α=α.isAL isAW′.α=α.isAW •
Animal

Which, expressed as a finite limit theory over binary relation symbols, has combined functionality-
totality conditions, for example:

∀(x : Amphibian).∃!(y : Land). IsAL(x, y)

and three implications, the first from D and the other two from F:

IsAL(x, y) ∧ IsLA(y, z) ∧ IsAW(x, y′) ∧ IsWA(y′, z′)⇒ z = z′
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isAL′(x, y) ∧ αLand′ (y, z) ∧ αAmphibian′ (x, y′) ∧ IsAL(y′, z′)⇒ z = z′

isAW′(x, y) ∧ αWater′ (y, z) ∧ αAmphibian′ (x, y′) ∧ IsAW(y′, z′)⇒ z = z′

Our input functor I : C → Set, displayed with one table per object, is:

Land’
lizard
toad
human
cow
horse

Water’
fish
salamander
newt
dolphin

Amphibian’ isAL’ isAW’
gecko lizard salamander
frog toad newt

The chase state is initialized to:

Land isLA
lizard
toad
human
cow
horse

Water isWA
fish
salamander
newt
dolphin

Amphibian isAL isAW
gecko
frog

Animal

Next, we add new elements (Animal remains empty):

Land isLA
lizard isLA(lizard)
toad isLA(toad)
human isLA(human)
cow isLA(cow)
horse isLA(horse)

Water isWA
fish isWA(fish)
salamander isWA(salamander)
newt isWA(newt)
dolphin isWA(dolphin)

Amphibian isAL isAW
gecko isAL(gecko) isAW(gecko)
frog isAL(frog) isAW(frog)

Next, we add coincidences. The single target equation in D induces no effect, because there are
no Animals that can possibly be equated yet. The two naturality conditions for α essentially state
that isAL and isAW should be copies of isAL’ and isAW’, requiring the following equivalences:

isAL(gecko) ∼ lizard isAW(gecko) ∼ salamander

isAL(toad) ∼ frog isAW(toad) ∼ newt

And so we end round one with no Animals and:

Land isLA
lizard isLA(lizard)
toad isLA(toad)
human isLA(human)
cow isLA(cow)
horse isLA(horse)

Water isWA
fish isWA(fish)
salamander isWA(salamander)
newt isWA(newt)
dolphin isWA(dolphin)
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Amphibian isAL isAW
gecko lizard salamander
frog toad newt

From here forward, the Amphibians table will not change, so we will not display it, and the
naturality conditions on α will always be satisfied. We begin the second round by creating nine
new animals:

Land isLA
lizard isLA(lizard)
toad isLA(toad)
human isLA(human)
cow isLA (cow)
horse isLA(horse)

Water isWA
fish isWA(fish)
salamander isWA(salamander)
newt isWA(newt)
dolphin isWA(dolphin)

Animal
isLA(lizard)
isLA(toad)
isLA(human)
isLA (cow)
isLA(horse)
isWA(fish)
isWA(salamander)
isWA(newt)
isWA(dolphin)

The single target equation in D induces the equivalences:

isLA(lizard) ∼ isWA(salamander) isLA(toad) ∼ isWA(newt)

for a final result of:

Land isLA
lizard isLA(lizard)
toad isLA(toad)
human isLA(human)
cow isLA (cow)
horse isLA(horse)

Water isWA
fish isWA(fish)
salamander isWA(salamander)
newt isWA(newt)
dolphin isWA(dolphin)

Animal
isLA(lizard)
isLA(toad)
isLA(human)
isLA (cow)
isLA(horse)
isWA(fish)
isWA(dolphin)

This is obviously uniquely isomorphic to the original example output:

Land isLA
lizard lizard
toad frog
human human
cow cow
horse horse

Water isWA
fish fish
salamander lizard
newt frog
dolphin dolphin

Animal
fish
frog
dolphin
human
cow
horse
gecko

However, the actual choice of names in the tables is not canonical, as we would expect for a
set-valued functor defined by a universal property, and different naming “strategies” are possi-
ble. In our categorical approach to data migration, we treat names not as values per se, but as
meaningless identifiers, a choice elaborated upon in this paper’s conclusion.
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3.4. Comparison to Previous Work

The authors of Bush et al. (2003) identify four actions that leave invariant the left Kan exten-
sion denoted by a state, and consider a run of the chase algorithm to be any “fair” sequence of
these actions:

1. Action α: add a new element. This step is similar to our α step, except it only adds one
element.

2. Action β: add a coincidence. This step is similar to our βF and βD, except it only considers
one equation.

3. Action δ: delete non-determinism. This is similar to our δ step, except it only applies to
one edge at a time. If (x, y) ∈ P(g) and (x, y′) ∈ P(g) but y , y′, add (y, y′) and (y′, y) to
∼ and delete (x, y′) from P(g). This process is “biased” towards keeping “older” values to
ensure “fairness”.

4. Action γ: delete a coincidence. If (x, y) ∈ ∼d for some d ∈ D, then replace y by x in various
places, and add new coincidences. In the first computational left Kan paper (Carmody
et al., 1995), this action took an entire companion technical report to justify (Carmody and
Walters, 1991); the authors of Bush et al. (2003) reduced this step to about a page. One
reason this step is complicated to write in Bush et al. (2003) is because the relation ∼ is
not required to be transitive; another reason is that the way deletion is done in the “various
places” depends on the particular place; and another is that deletion is done “in place.”

Similar to the algorithm in Bush et al. (2003), our algorithm generalizes to product categories,
because left Kan extensions for product categories can be axiomatized as finite limit theories
(where some symbols may have arity > 1). Readers porting the functionality from the CQL
implementation in the next section to the sequential algorithm above should note that ensuring
the fairness condition of action δ above requires making the path-compression strategy for ∼
aware of the “age” of each output row.

3.5. Implementation in CQL

Our CQL implementation minimizes memory usage of the algorithm sketched above by stor-
ing cardinalities instead of meaningless identifiers and using lists instead of sets, and so a CQL
left Kan chase state as benchmarked in this paper consists of:

1. For each d ∈ D, a number J(d) ≥ 0.
2. For each d ∈ D, a list of length J(d), where each element has the form (c, x, p), for some

c ∈ C, x ∈ I(c), and p : F(c)→ d.
3. For each d ∈ D, a union-find data structure (Nelson and Oppen, 1980) based on path-

compressed trees ∼d ⊆ J(d) × J(d) (Sedgewick and Wayne, 2011).
4. For each edge f : d1 → d2 ∈ D, a list of length J(d1), each element of which is a number

between 0 and J(d2).
5. For each c ∈ C, a function η(c) : I(c)→ J(F(c)).

From a theoretical viewpoint, the above state is more precisely considered as a functor to the
skeleton (Barr and Wells, 1990) of the category of sets. The CQL implementation runs the Java
garbage collector between rounds, uses “hash-consed” (Baader and Nipkow, 1998), tree-based
terms, and uses strings for symbol and variable names.
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4. Conclusion: Left Kan Extensions and Database Theory

We conclude by briefly summarizing how our use of the chase in this paper relates to its use
in data migration and/or integration, which we refer to collectively as DMI (Doan et al., 2012).
Readers not interested in DMI may safely skip this section.

In DMI, instances are assumed to hold two kinds of values: constants and (labelled) nulls.
Constants are regarded as having inherent identity, such as numerals 1 or 2 or a social security
number; nulls, sometimes called Skolem variables (Doan et al., 2012), can be created during
many DMI tasks and are regarded as distinct from constants and “less meaningful”; they are
considered up to isomorphism. In particular, in DMI, when an equality-generating dependency
n = c is encountered, where n is a null and c a constant, then n is replaced by c, and never vice-
versa; moreover if c = c′ is encountered for two distinct constants c , c′ then the chase fails.
Hence, from the DMI point of view, our instances in this paper are made entirely of nulls, and
so our chases never fail (although they may diverge). The many consequences of adopting an
unfailing, nulls-only chase procedure in the context of DMI are explored in Schultz et al. (2017);
Spivak and Wisnesky (2015); Schultz and Wisnesky (2017) .
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